Thursday, 2 November 2017

Prognose Nachfrage Moving Average Beispiel


OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Nachstehend ist die Nachfrage nach einem Produkt in den letzten fünf Monaten aufgeführt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup2 3 16.67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0.9 MSD (13-17) Sup2 (16.60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup2 4 10.44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat ergibt, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir nicht fraktionierte Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat vorher, dass also der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist daher 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Die Prognose für den 13. Monat ist daher 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir: Gewichtete gleitende durchschnittliche Prognosemethoden: Vor - und Nachteile Hallo, LIEBE deine Post. Ich frage mich, ob Sie weiter ausarbeiten könnte. Wir verwenden SAP. In ihm gibt es eine Auswahl, die Sie wählen können, bevor Sie Ihre Prognose ausführen, die Initialisierung genannt wird. Wenn Sie diese Option aktivieren, erhalten Sie ein Prognoseergebnis, wenn Sie die Prognose erneut im gleichen Zeitraum ausführen und die Initialisierung nicht auf die Ergebnisänderung überprüfen. Ich kann nicht herausfinden, was diese Initialisierung tut. Ich meine, mathematisch. Welches Prognoseergebnis am besten zu speichern und zu nutzen ist. Die Änderungen zwischen den beiden sind nicht in der prognostizierten Menge, sondern in der MAD und Fehler, Sicherheitsbestand und ROP-Mengen. Nicht sicher, ob Sie SAP verwenden. Hallo danke für die erklärung so effeciently seine zu gd. Thanks again Jaspreet Hinterlasse eine Antwort Antworten abbrechen Beliebte Beiträge Über Shmula Pete Abilla ist der Gründer von Shmula und der Charakter, Kanban Cody. Er hat Unternehmen wie Amazon, Zappos, eBay, Backcountry und andere helfen, Kosten zu senken und die Kundenerfahrung zu verbessern. Er tut dies durch eine systematische Methode zur Identifizierung von Schmerzen, die Auswirkungen auf den Kunden und das Geschäft, und fördert eine breite Beteiligung der Mitarbeiter des Unternehmens, um ihre eigenen Prozesse zu verbessern. Diese Website ist eine Sammlung seiner Erfahrungen, die er mit Ihnen teilen möchte. Erste Schritte mit kostenlosen Downloads

No comments:

Post a Comment